Add like
Add dislike
Add to saved papers

Strontium ion attenuates lipopolysaccharide-stimulated proinflammatory cytokine expression and lipopolysaccharide-inhibited early osteogenic differentiation of human periodontal ligament cells.

BACKGROUND AND OBJECTIVE: Periodontitis is a chronic inflammatory disease characterized by the destruction of the periodontium. The strontium ion (Sr2+ ) can prevent the bone loss associated with periodontitis and promote the regeneration of the bone. The mechanisms by which the Sr2+ works remain poorly understood. We aim to investigate the effects of the Sr2+ ion on cell proliferation, inflammatory regulation and osteogenic differentiation of human periodontal ligament cells (hPDLCs) in pathological conditions.

MATERIAL AND METHODS: hPDLCs were obtained from premolars that came from the orthodontic extraction. The hPDLCs were treated with Sr2+ and/or lipopolysaccharide (LPS), which was applied as the pathological condition of periodontitis. The effect of the dose of Sr2+ on cell proliferation was analyzed using a Cell Counting Kit-8 assay. The gene and protein expression of proinflammatory cytokines were detected by the real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The osteogenic differentiation and mineralization were assessed by the real-time polymerase chain reaction, alkaline phosphatase activity assay and alizarin red staining.

RESULTS: Results demonstrated that Sr2+ in a range of concentrations from 0.02 to 2.5 mmol/L significantly improved the proliferation of hPDLCs. Sr2+ reversed LPS-stimulated proinflammatory cytokine expressions such as tumor necrosis factor alpha, interleukin (IL)-1β, IL-6 and IL-8. Moreover, Sr2+ rescued the LPS-inhibited gene expression of osteogenic differentiation. Although it appeared to suppress the late mineralization, Sr2+ can reverse the LPS-inhibited early osteogenic differentiation of hPDLCs.

CONCLUSION: These results indicated that Sr2+ could attenuate the LPS-stimulated proinflammatory molecule expression and inhibit early osteogenic differentiation of hPDLCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app