Add like
Add dislike
Add to saved papers

Strength Analyses of Screws for Femoral Neck Fractures.

This article represents a multidisciplinary approach to biomechanics (engineering + medicine) in the field of "collum femoris" fractures. One possible treatment method for femoral neck fractures, especially for young people, is the application of cancellous (i.e. lag or femoral) screws (with full or cannulated cross-section) made of Ti6Al4V or stainless steel. This paper therefore aims to offer our own numerical model of cancellous screws together with an assessment of them. The new, simple numerical model presented here is derived together with inputs and boundary conditions and is characterized by rapid solution. The model is based on the theory of beams on an elastic foundation and on 2nd order theory (set of three differential 4th order equations, combination of pressure and bending stress-deformation states). It presents the process for calculating displacements, slopes, bending moments, stresses etc. Two examples (i.e. combinations of cancellous screws with full or cannulated cross-section made of stainless steel or Ti6Al4V material) are presented and evaluated (i.e. their displacement, slopes, bending moments, normal forces, shearing forces and stresses). Future developments and other applications are also proposed and mentioned.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app