Add like
Add dislike
Add to saved papers

Convergence and adaptive discretization of the IRGNM Tikhonov and the IRGNM Ivanov method under a tangential cone condition in Banach space.

In this paper we consider the iteratively regularized Gauss-Newton method (IRGNM) in its classical Tikhonov version as well as two further-Ivanov type and Morozov type-versions. In these two alternative versions, regularization is achieved by imposing bounds on the solution or by minimizing some regularization functional under a constraint on the data misfit, respectively. We do so in a general Banach space setting and under a tangential cone condition, while convergence (without source conditions, thus without rates) has so far only been proven under stronger restrictions on the nonlinearity of the operator and/or on the spaces. Moreover, we provide a convergence result for the discretized problem with an appropriate control on the error and show how to provide the required error bounds by goal oriented weighted dual residual estimators. The results are illustrated for an inverse source problem for a nonlinear elliptic boundary value problem, for the cases of a measure valued and of an L ∞ source. For the latter, we also provide numerical results with the Ivanov type IRGNM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app