Add like
Add dislike
Add to saved papers

Superior efficacy of HI-6 dimethanesulfonate over pralidoxime methylsulfate against Russian VX poisoning in cynomolgus monkeys (Macaca fascicularis).

Toxicology 2018 December 2
Organophosphorus nerve agents still represent a serious risk to human health. In the French armed forces, the current emergency treatment against OP intoxications is a fully licensed wet-dry dual-chambered autoinjector (Ineurope ®), that contains pralidoxime methylsulfate (2-PAM) to reactivate inhibited acetylcholinesterase (AChE), atropine sulfate (AS) and avizafone chlorhydrate (AVZ). While this treatment is effective against several of the known nerve agents, it shows little efficacy against the Russian VX (VR), one of the most toxic compounds. HI-6 dimethanesulfonate (HI-6 DMS) is an oxime able to reactivate in vitro and in vivo VR-inhibited AChE. To confirm the superiority of HI-6 DMS towards 2-PAM prior to licensing, we compared the two 3-drug-combinations (HI-6 vs 2-PAM, 33 and 18 mg/kg respectively, equimolar doses; AS/AVZ 0.25/0.175 mg/kg respectively) in VR-poisoned cynomolgus macaques, the model required by the French drug regulatory agency. In parallel we performed HI-6 pharmacokinetics analysis using a one compartment model. A better efficacy of the HI-6 DMS combination was clearly observed: up to 5 LD50 of VR (i.m.), a single administration of the HI-6 DMS combination, shortly after the onset of clinical signs, prevented death of the four intoxicated animals. Conversely 2-PAM only prevented death in one out of three subjects exposed to the same amount of VR. As expected with V agents, reinhibition of blood AChE was observed but without any apparent impact on the clinical recovery of the animals. A single administration of the HI-6 DMS combination was still but partially effective at 15 LD50 of VR, allowing a 50% survival rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app