Add like
Add dislike
Add to saved papers

Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury.

The available evidence showed that mitochondrial transfer by releasing the extracellular vesicles containing mitochondria from astrocytes to neurons exerted a neuroprotective effect after stroke. Whether extracellular mitochondrial replenishment could rescue the tissues from cerebral ischemic injury still needs to be explored completely. It was hypothesized that the augmentation of mitochondrial damage after cerebral ischemia could be resolved by timely replenishment of exogenous mitochondria. A stroke model of middle cerebral artery occlusion (MCAO) was used in this study to verify this hypothesis. This study found that the number of extracellular mitochondria increased in rat cerebrospinal fluid after MCAO, and a higher proportion of mitochondria were associated with good neurological outcomes. Following 90-min ischemia, autologously derived mitochondria (isolated from autologous pectoralis major) or vehicle alone was infused directly into the lateral ventricles, and the rats were allowed to recover for 4 weeks. A plenty of infused mitochondria were found to be distributed in the boundary and ischemic penumbra areas. Furthermore, the transplantation of mitochondria reduced cellular oxidative stress and apoptosis, attenuated reactive astrogliosis, and promoted neurogenesis after stroke. Moreover, the transplantation of mitochondria decreased brain infarct volume and reversed neurological deficits. The findings suggested that the delivery of mitochondria through the lateral ventricles resulted in their widespread distribution throughout the brain and exerted a neuroprotective effect after ischemia-reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app