Add like
Add dislike
Add to saved papers

Arabinoxylan Attenuates Type 2 Diabetes by Improvement of Carbohydrate, Lipid, and Amino Acid Metabolism.

SCOPE: Type 2 diabetes is a complex metabolic and endocrine disorder worldwide, which causes severe health and economic problems. The aim of this study is to investigate the molecular mechanisms by which arabinoxylan from Plantago asiatica L. attenuates type 2 diabetes from the perspective of urine metabolomics.

METHODS AND RESULTS: High-fat diet and streptozotocin-induced type 2 diabetic rats are treated with arabinoxylan, then the urine samples are collected for untargeted metabolomics analysis by UPLC-Triple-TOF/MS. Diabetes causes significant increases in the levels of acetone, glucose, 2-oxoglutarate, and leucine, and significant decreases in the concentrations of creatine, histidine, lysine, l-tryptophan, hippurate, l-cysteine, kynurenine, and arabitol as compared with normal rats (p < 0.01). And these 12 metabolites (with VIP cut-off value > 1) can be used as biomarkers in type 2 diabetes. A total of 21 urinary metabolites are significantly improved by arabinoxylan administration in diabetic rats, and these metabolites are mainly involved in TCA cycle, and metabolism of lipid and ketone body, taurine and hypotaurine, tryptophan, and branched chain amino acids.

CONCLUSION: Arabinoxylan administration improves carbohydrate, lipid, and amino acid metabolism in type 2 diabetic rats, which provide important insights into the mechanisms underlying type 2 diabetes as well as the effects of arabinoxylan.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app