Add like
Add dislike
Add to saved papers

The role of TrkA in the promoting wounding-healing effect of CD271 on epidermal stem cells.

CD271, a receptor of nerve growth factor (NGF), affects the biological properties of epidermal stem cells (eSCs) which are essential for skin wound closure. Tropomyosin-receptor kinase A (TrkA), another receptor of NGF, combined with CD271 has been involved with nervous system and skin keratinocytes. However, the exact role of TrkA combined with CD271 in eSCs during skin wound closure is still unclear. This study aimed to reveal the role of TrkA in the promoting wounding-healing effect of CD271 on eSCs. We obtained CD271-vo (over-expression of CD271) eSCs by lentiviral infection. K252a was used to inhibit TrkA expression. Full-thickness skin mouse wound closure model (5 mm in diameter) was used to detect the ability of CD271 over-expressed/TrkA-deficient during wound healing. The biological characteristics of eSCs and their proliferation and apoptosis were detected using immunohistochemistry and western blot. The expressions of protein kinase B (pAkt)/Akt, phosphorylated extracellular-signal-related kinase (pERK)/ERK1/2, and c-Jun N-terminal kinase (pJNK)/JNK were also detected by western blot. We found that over-expression of CD271 promoted the biological functions of eSCs. Interestingly, over-expression of CD271 in the absence of TrkA neither promoted eSCs' migration and proliferation nor promoted wound healing in a mouse model. In addition, we observed the reduced expression of pAkt/Akt and pERK/ERK1/2 following TrkA inhibition in vitro. Our studies demonstrated that the role of TrkA in the promoting wounding-healing effect of CD271 on eSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app