Add like
Add dislike
Add to saved papers

ERG Channels Regulate Excitability in Stellate and Bushy Cells of Mice Ventral Cochlear Nucleus.

Journal of Membrane Biology 2018 September 12
ERG (ether-a-go-go-related gene) channels are the members of the voltage-dependent potassium channel family, which have three subtypes, as ERG1 (Kv 11.1), ERG2 (Kv 11.2), and ERG3 (Kv11.3). There is no information on ERG channels in the cochlear nucleus (CN) neurons, which is the first relay station of the auditory pathway. As occur in some of congenital long QT Syndromes (LQTS), mutation of the KCNQ11 genes for ERG channel has been reported to be accompanied by hearing loss. For that reason, we aimed to study biophysical properties and physiological importance, and contribution of ERG K+ currents to the formation of action potentials in the stellate and bushy neurons of the ventral cochlear nucleus (VCN). A total of 70 mice at 14-17 days old were used for this study. Electrophysiological characterization of ERG channels was performed using patch-clamp technique in the CN slices. In current clamp, ERG channel blockers, terfenadine (10 µM) and E-4031 (10 µM), were applied in both cell types. The activation, inactivation, and deactivation kinetics of the ERG channels were determined by voltage clamp. In conclusion, the findings obtained in the present study suggest that stellate and bushy neurons express ERG channels and ERG channels appear to contribute to setting action potential (AP) frequency, threshold for AP induction, and, possibly, resting membrane potentials in this cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app