Add like
Add dislike
Add to saved papers

DNA entry, exit and second DNA capture by cohesin: insights from biochemical experiments.

Nucleus 2018
Cohesin is a ring-shaped, multi-subunit ATPase assembly that is fundamental to the spatiotemporal organization of chromosomes. The ring establishes a variety of chromosomal structures including sister chromatid cohesion and chromatin loops. At the core of the ring is a pair of highly conserved SMC (Structural Maintenance of Chromosomes) proteins, which are closed by the flexible kleisin subunit. In common with other essential SMC complexes including condensin and the SMC5-6 complex, cohesin encircles DNA inside its cavity, with the aid of HEAT (Huntingtin, elongation factor 3, protein phosphatase 2A and TOR) repeat auxiliary proteins. Through this topological embrace, cohesin is thought to establish a series of intra- and interchromosomal interactions by tethering more than one DNA molecule. Recent progress in biochemical reconstitution of cohesin provides molecular insights into how this ring complex topologically binds and mediates DNA-DNA interactions. Here, I review these studies and discuss how cohesin mediates such chromosome interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app