Add like
Add dislike
Add to saved papers

pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC.

One of the hottest topics in molecular cell biology is to determine the subcellular localization of proteins from various different organisms. This is because it is crucially important for both basic research and drug development. Recently, a predictor called "pLoc-mGneg" was developed for identifying the subcellular localization of Gram-negative bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called "multiplex proteins", may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGneg was trained by an extremely skewed dataset in which some subset (subcellular location) was about 5 to 70 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset. To alleviate such a consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGneg by quasi-balancing the training dataset. Cross-validation tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGneg, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-negative bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at https://www.jci-bioinfo.cn/pLoc_bal-mGneg/, by which users can easily get their desired results without the need to go through the detailed mathematics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app