Add like
Add dislike
Add to saved papers

Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation.

HYPOTHESIS: Direct contact membrane distillation (DCMD) processes exploit water-repellant membranes to desalt warm seawaters by allowing only water vapor to transport across. While perfluorinated membranes/coatings are routinely used for DCMD, their vulnerability to abrasion, heat, and harsh chemicals necessitates alternatives, such as ceramics. Herein, we systematically assess the potential of ceramic membranes consisting of anodized aluminum oxide (AAO) for DCMD.

EXPERIMENTS: We rendered AAO membranes superhydrophobic to accomplish the separation of hot salty water (343 K, 0.7 M NaCl) and cold deionized water (292 K) and quantified vapor transport. We also developed a multiscale model based on computational fluid dynamics, conjugate heat transfer, and the kinetic theory of gases to gain insights into our experiments.

FINDINGS: The average vapor fluxes, J, across three sets of AAO membranes with average nanochannel diameters (and porosities) centered at 80 nm (32%), 100 nm (37%), and 160 nm (57%) varied by < 25%, while we had expected them to scale with the porosities. Our multiscale simulations unveiled how the high thermal conductivity of the AAO membranes reduced the effective temperature drive for the mass transfer. Our results highlight the limitations of AAO membranes for DCMD and might advance the rational development of desalination membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app