Add like
Add dislike
Add to saved papers

Simultaneous biosynthesis of ( R )-acetoin and ethylene glycol from D-xylose through in vitro metabolic engineering.

( R )-acetoin is a four-carbon platform compound used as the precursor for synthesizing novel optically active materials. Ethylene glycol (EG) is a large-volume two-carbon commodity chemical used as the anti-freezing agent and building-block molecule for various polymers. Currently established microbial fermentation processes for converting monosaccharides to either ( R )-acetoin or EG are plagued by the formation of undesirable by-products. We show here that a cell-free bioreaction scheme can generate enantiomerically pure acetoin and EG as co-products from biomass-derived D-xylose. The seven-step, ATP-free system included in situ cofactor regeneration and recruited enzymes from Escherichia coli W3110, Bacillus subtilis shaijiu 32 and Caulobacter crescentus CB 2. Optimized in vitro biocatalytic conditions generated 3.2 mM ( R )-acetoin with stereoisomeric purity of 99.5% from 10 mM D-xylose at 30 °C and pH 7.5 after 24 h, with an initial ( R )-acetoin productivity of 1.0 mM/h. Concomitantly, EG was produced at 5.5 mM, with an initial productivity of 1.7 mM/h. This in vitro biocatalytic platform illustrates the potential for production of multiple value-added biomolecules from biomass-based sugars with no ATP requirement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app