Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of adipocyte-derived IGF-I on adipose tissue mass and glucose metabolism in the Berlin Fat Mouse.

Growth Factors 2018 April
Besides liver, IGF-I is expressed in adipose tissue. However, the effects of this local IGF-I on adipose tissue and metabolism are unclear. We generated adipocyte-specific knock-out mice on the background of the Berlin Fat Mouse Inbred (BFMI) line to evaluate the contribution of adipocyte-IGF-I on glucose metabolism and adipose tissue development. BFMI mice are obese, non-diabetic with elevated plasma insulin and IGF-I concentration. The knock-out in adipocytes led to a total white adipose tissue expression of 50-60% due to unaltered Igf-1 expression in stromavascular cells. The lack of IGF-I from adipocytes did not alter plasma IGF-I concentration. BFMIChr3 -Igf-I-KOQ-AT mice had reduced adipose tissue mass in most depots. During oral glucose tolerance tests, BFMIChr3 -Igf-I-KOQ-AT mice showed an impaired glucose clearance (p = .03). Interestingly, insulin action was enhanced during insulin tolerance tests (p = .05). In conclusion, adipocyte-specific IGF-I ablation in obese BFMI mice results in reduced adipose tissue mass and thereby alters glucose metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app