Add like
Add dislike
Add to saved papers

Detection of Enzymes, Viruses, and Bacteria Using Glucose Meters.

Analytical Chemistry 2018 October 3
We have developed innovative assays that can detect enzymes rapidly. Paracetamol- or catechol-bearing compounds, when exposed to their respective enzymes, released paracetamol or catechol, which can be detected using a standard glucose meter. This approach was used to detect a number of diverse analytes that include enzymes such as β-galactosidase and α-mannosidase and pathogens such as influenza viruses, Streptococcus pneumoniae, and E. coli rapidly. The limit of detection for all analytes was extremely low and clinically relevant for influenza viruses. We also demonstrate that glucose oxidase or glucose dehydrogenase is not required because the paracetamol gets oxidized directly on the electrode surface. This indicates that test strips without glucose oxidase or dehydrogenase can be used, and we can detect analytes in the presence of high levels of background glucose. We demonstrate this unique nature of the assay to detect paracetamol in simulated urine and sheep blood without background interference of intrinsic glucose, indicating that glucose meters can be used to detect nonglucose analytes without background glucose interference.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app