JOURNAL ARTICLE

FGF controls epithelial-mesenchymal transitions during gastrulation by regulating cell division and apicobasal polarity

Jingjing Sun, Angelike Stathopoulos
Development 2018 October 1, 145 (19)
30190277
To support tissue and organ development, cells transition between epithelial and mesenchymal states. Here, we have investigated how mesoderm cells change state in Drosophila embryos and whether fibroblast growth factor (FGF) signaling plays a role. During gastrulation, presumptive mesoderm cells invaginate, undergo an epithelial-to-mesenchymal state transition (EMT) and migrate upon the ectoderm. Our data show that EMT is a prolonged process in which adherens junctions progressively decrease in number throughout the migration of mesoderm cells. FGF influences adherens junction number and promotes mesoderm cell division, which we propose decreases cell-cell attachments to support slow EMT while retaining collective cell movement. We also found that, at the completion of migration, cells form a monolayer and undergo a reverse mesenchymal-to-epithelial transition (MET). FGF activity leads to accumulation of β-integrin Myospheroid basally and cell polarity factor Bazooka apically within mesoderm cells, thereby reestablishing apicobasal cell polarity in an epithelialized state in which cells express both E-Cadherin and N-Cadherin. In summary, FGF plays a dynamic role in supporting mesoderm cell development to ensure collective mesoderm cell movements, as well as proper differentiation of mesoderm cell types.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
30190277
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"