Add like
Add dislike
Add to saved papers

Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass.

The performance of tertiary moving bed biofilm reactors (MBBRs) was evaluated in terms of micropollutants (MPs) removal from secondary-treated municipal wastewater. After stepwise establishment of a mature biofilm, monitored by scanning electron and confocal microscopies, abiotic and biotic removals of MPs were deeply studied. Since no MPs reduction was observed by the both photodegradation and volatilization, abiotic removal of MPs was ascribed to the sorption onto the biomass. Target MPs i.e. Naproxen, Diclofenac, 17β-Estradiol and 4n-Nonylphenol, arranged in the ascending order of hydrophobicity, abiotically declined up to 2.8%, 4%, 9.5% and 15%, respectively. MPs sorption onto the suspended biomass was found around two times more than the biofilm, in line with MPs' higher sorption kinetic constants (ksor ) found for the suspended biomass. When comparing abiotic and biotic aspects, we found that biotic removal outperformed its counterpart for all compounds as Diclofenac, Naproxen, 17β-Estradiol and 4n-Nonylphenol were biodegraded by 72.8, 80.6, 84.7 and 84.4%, respectively. The effect of the changes in organic loading rates (OLRs) was investigated on the pseudo-first order degradation constants (kbiol ), revealing the dominant biodegradation mechanism of co-metabolism for the removal of Diclofenac, Naproxen, and 4n-Nonylphenol, while 17β-Estradiol obeyed the biodegradation mechanism of competitive inhibition. Biotic removals and kbiol values of all MPs were also seen higher in the biofilm as compared to the suspended biomass. To draw a conclusion, a quite high removal of recalcitrant MPs is achievable in tertiary MBBRs, making them a promising technology that supports both pathways of co-metabolism and competitive inhibition, next to the abiotic attenuation of MPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app