We have located links that may give you full text access.
Clinical Trial
Journal Article
Effects of pharmacist intervention in Vancomycin treatment for patients with bacteremia due to Methicillin-resistant Staphylococcus aureus.
PloS One 2018
OBJECTIVE: We conducted a retrospective study based on composite endpoints for treatment failure to evaluate the effect of pharmacist-led VCM initial dose planning for Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia patients.
METHODS: A retrospective cohort study was performed between pharmacist intervention and non-intervention groups. In this study, four types of failure were defined as the composite endpoint. When any one of the following failures occurred: 1) Death within 30 days from the start of VCM therapy, 2) Positive blood culture 7 days after the start of VCM therapy, 3) Change of VCM to another anti-MRSA agent, and 4) Development of nephrotoxicity, we considered that VCM treatment had failed. Survival time analysis was conducted with the Kaplan-Meier method and Cox's proportional hazard model that included seven predefined parameters: pharmacist intervention, age, sex, weight, baseline VCM trough concentration, Charlson Comorbidity Index (CCI), and Pitt Bacteremia score (PBS). The effect of pharmacist intervention was studied as the survival probability estimated from the period of time from the start of VCM administration to the earliest failure.
RESULTS: The survival rate at 30 days after starting VCM therapy, at the end of follow-up, was 53.1 and 82.1% in the non-intervention and intervention groups, respectively. A significant survival time prolongation was noted in the intervention group (p = 0.011, log rank test). Among the seven parameters, only pharmacist intervention was significantly different and its hazard ratio was 0.26 (p = 0.014). The survival probability of the intervention group was higher than that of the non-intervention group for the time to each failure. In subgroup analyses, a significant difference was noted in male patients between the intervention and non-intervention groups (p = 0.005). Age was categorized into those under and over 65 years old. For those over 65 years old, a significant difference was shown between the groups (p = 0.018).
CONCLUSION: To our knowledge, this is the first study to evaluate the failure of VCM treatment based on the composite endpoint. Pharmacist intervention through the initial VCM dose planning could maintain a balance between the efficacy and safety of VCM treatment and might avoid treatment failure for patients with MRSA bacteremia. Further investigations with large sample sizes are required to confirm our findings.
METHODS: A retrospective cohort study was performed between pharmacist intervention and non-intervention groups. In this study, four types of failure were defined as the composite endpoint. When any one of the following failures occurred: 1) Death within 30 days from the start of VCM therapy, 2) Positive blood culture 7 days after the start of VCM therapy, 3) Change of VCM to another anti-MRSA agent, and 4) Development of nephrotoxicity, we considered that VCM treatment had failed. Survival time analysis was conducted with the Kaplan-Meier method and Cox's proportional hazard model that included seven predefined parameters: pharmacist intervention, age, sex, weight, baseline VCM trough concentration, Charlson Comorbidity Index (CCI), and Pitt Bacteremia score (PBS). The effect of pharmacist intervention was studied as the survival probability estimated from the period of time from the start of VCM administration to the earliest failure.
RESULTS: The survival rate at 30 days after starting VCM therapy, at the end of follow-up, was 53.1 and 82.1% in the non-intervention and intervention groups, respectively. A significant survival time prolongation was noted in the intervention group (p = 0.011, log rank test). Among the seven parameters, only pharmacist intervention was significantly different and its hazard ratio was 0.26 (p = 0.014). The survival probability of the intervention group was higher than that of the non-intervention group for the time to each failure. In subgroup analyses, a significant difference was noted in male patients between the intervention and non-intervention groups (p = 0.005). Age was categorized into those under and over 65 years old. For those over 65 years old, a significant difference was shown between the groups (p = 0.018).
CONCLUSION: To our knowledge, this is the first study to evaluate the failure of VCM treatment based on the composite endpoint. Pharmacist intervention through the initial VCM dose planning could maintain a balance between the efficacy and safety of VCM treatment and might avoid treatment failure for patients with MRSA bacteremia. Further investigations with large sample sizes are required to confirm our findings.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app