Add like
Add dislike
Add to saved papers

HOXD10 silencing suppresses human fibroblast-like synoviocyte migration in rheumatoid arthritis via downregulation of the p38/JNK pathway.

Homeobox D10 (HOXD10) belongs to the human homeobox (HOX) gene family, and the homologous protein encoded by HOX primarily controls cell differentiation and morphogenesis during embryonic development. The current study aimed to explore the roles and mechanisms of HOXD10 in the migration of human fibroblast-like synoviocytes in rheumatoid arthritis (RAFLS). Cell counting kit-8, cell migration and wound healing assays were performed to examine the cell viability and migration, respectively. Western blot and reverse transcription-quantitative polymerase chain reaction assays were used to evaluate the association between mRNA and protein expression levels. The results revealed HOXD10 expression was upregulated in tissues from patients with RA. HOXD10 silencing inhibited the viability of RAFLS. In addition, HOXD10 silencing suppressed the migration of RAFLS through modulating the expression of cadherin-11, N-cadherin, E-cadherin, vimentin, zonula occludens-1, integrinβ1 and paxillin. In conclusion, HOXD10 silencing downregulates the p38/c-Jun N-terminal kinase signaling pathway, which in turn may suppress the migration of RAFLS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app