Add like
Add dislike
Add to saved papers

Additively manufactured biphasic construct loaded with BMP-2 for vertical bone regeneration: A pilot study in rabbit.

Vertical bone augmentation of the jaws is required when the height of bone is insufficient at the site of dental implant placement. In this proof of concept study, we investigated the potential of a biphasic polycaprolactone construct combined with a hyaluronic acid based hydrogel loaded with recombinant human bone morphogenetic growth factor-2 (BMP-2) for vertical bone regeneration. The biphasic scaffold consisted of an outer shell manufactured by fused deposition modelling, mimicking native cortical bone and providing mechanical and space maintenance properties essential for bone formation. Within this shell, a 90% porous melt electrospun microfibrous mesh mimicking the architecture of cancellous bone was incorporated in order to facilitate hydrogel loading and subsequent osteogenesis and angiogenesis. The in vitro performances of the biphasic construct demonstrated that BMP-2 was released in a sustained manner over several weeks and that cell viability was maintained in the hydrogel over 21 days. qRT-PCR demonstrated the upregulation of bone markers such as osteopontin, osteocalcin and collagen 1A1 at day 3 and 14 in the constructs loaded with BMP2. In vivo assessment of the biphasic scaffold was performed using a dose of 30 μg of BMP-2 in a rabbit calvarial vertical bone augmentation model. The histology and micro-CT analysis of the elevated space demonstrated that the hydrogel and the presence of BMP-2 enabled bone formation. However, this was limited to the immediate vicinity of the calvarial bone. The amount of newly formed bone was relatively small which was likely due to poor vascularisation of the extraskeletal space. The utilisation of this biomimetic biphasic construct with excellent space maintenance properties can be of interest in dentistry although the in vivo model requires refinement to demonstrated appropriate efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app