Add like
Add dislike
Add to saved papers

Impact of Solution Chemistry and Particle Anisotropy on the Collective Dynamics of Oriented Aggregation.

ACS Nano 2018 September 20
Although oriented aggregation of particles is a widely recognized mechanism of crystal growth, the impact of many fundamental parameters, such as crystallographically distinct interfacial structures, solution composition, and nanoparticle morphology, on the governing mechanisms and assembly kinetics are largely unexplored. Thus, the collective dynamics of systems exhibiting OA has not been predicted. In this context, we investigated the structure and dynamics of boehmite aggregation as a function of solution pH and ionic strength. Cryogenic transmission electron microscopy shows that boehmite nanoplatelets assemble by oriented attachment on (010) planes. The coagulation rate constants obtained from dynamic light scattering during the early stages of aggregation span 7 orders of magnitude and cross both the reaction-limited and diffusion-limited regimes. Combining a simple scaling analysis with calculations for stability ratios and rotational/translational diffusivities of irregular particle shapes, the effects of orientation for irregular-shaped particles on the early stages of aggregation are understood via angular dependencies of van der Waals, electrostatic, and hydrodynamic interactions. Using Monte Carlo simulations, we found that a simple geometric parameter, namely, the contact area between two attaching nanoplatelets, presents a useful tool for correlating nanoparticle morphologies to the emerging larger-scale aggregates, hence explaining the unusually high fractal dimensions measured for boehmite aggregates. Our findings on nanocrystal transport and interactions provide insights toward the predictive understanding of nanoparticle growth, assembly, and aggregation, which will address critical challenges in developing synthesis strategies for nanostructured materials, understanding the evolution of geochemical reservoirs, and addressing many environmental problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app