JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function.

Molecular Metabolism 2018 November
OBJECTIVES: Hepatic insulin resistance is a hallmark of type 2 diabetes and obesity. Insulin receptor signaling through AKT and FOXO has important metabolic effects that have traditionally been ascribed to regulation of gene expression. However, whether all the metabolic effects of FOXO arise from its regulation of protein-encoding mRNAs is unknown.

METHODS: To address this question, we obtained expression profiles of FOXO-regulated murine hepatic microRNAs (miRNAs) during fasting and refeeding using mice lacking Foxo1, 3a, and 4 in liver (L-Foxo1,3a, 4).

RESULTS: Out of 439 miRNA analyzed, 175 were differentially expressed in Foxo knockouts. Their functions were associated with insulin, Wnt, Mapk signaling, and aging. Among them, we report a striking increase of miR-205-5p expression in L-Foxo1,3a,4 knockouts, as well as in obese mice. We show that miR-205-5p gain-of-function increases AKT phosphorylation and decreases SHIP2 in primary hepatocytes, resulting in FOXO inhibition. This results in decreased hepatocyte glucose production. Consistent with these observations, miR-205-5p gain-of-function in mice lowered glucose levels and improved pyruvate tolerance.

CONCLUSIONS: These findings reveal a homeostatic miRNA loop regulating insulin signaling, with potential implications for in vivo glucose metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app