JOURNAL ARTICLE

Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils

Leadin S Khudur, Deirdre B Gleeson, Megan H Ryan, Esmaeil Shahsavari, Nagalakshmi Haleyur, Dayanthi Nugegoda, Andrew S Ball
Environmental Pollution 2018, 243 (Pt A): 94-102
30172128
The bioremediation of historic industrial contaminated sites is a complex process. Co-contamination, often with lead which was commonly added to gasoline until 16 years ago is one of the biggest challenges affecting the clean-up of these sites. In this study, the effect of heavy metals, as co-contaminant, together with total petroleum hydrocarbons (TPH) is reported, in terms of remaining soil toxicity and the structure of the microbial communities. Contaminated soil samples from a relatively hot and dry climate in Western Australia were collected (n = 27). Analysis of soils showed the presence of both contaminants, TPHs and heavy metals. The Microtox test confirmed that their co-presence elevated the remaining ecotoxicity. Toxicity was correlated with the presence of lead, zinc and TPH (0.893, 0.599 and 0.488), respectively, assessed using Pearson Correlation coefficient factor. Next Generation Sequencing of soil bacterial 16S rRNA, revealed a lack of dominate genera; however, despite the variation in soil type, a few genera including Azospirillum spp. and Conexibacter were present in most soil samples (85% and 82% of all soils, respectively). Likewise, many genera of hydrocarbon-degrading bacteria were identified in all soil samples. Streptomyces spp. was presented in 93% of the samples with abundance between 7% and 40%. In contrast, Acinetobacter spp. was found in only one sample but was a dominant member of (45%) of the microbial community. In addition, some bacterial genera were correlated to the presence of the heavy metals, such as Geodermatophilus spp., Rhodovibrio spp. and Rubrobacter spp. which were correlated with copper, lead and zinc, respectively. This study concludes that TPH and heavy metal co-contamination significantly elevated the associated toxicity. This is an important consideration when carrying out risk assessment associated with natural attenuation. This study also improves knowledge about the dynamics of microbial communities in mixed contamination scenarios.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
30172128
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"