JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Advances in Understanding the Pathophysiology of Lacunar Stroke: A Review.

JAMA Neurology 2018 October 2
Importance: Stroke is the second leading cause of death in the world, and nearly one-third of ischemic strokes are lacunar strokes (LSs) or small subcortical infarcts. Although smaller in size, they create large problems, leaving many patients with intellectual and physical disabilities. Because there are limitations in understanding the underlying pathophysiology of LS, the development of novel therapies has been slow.

Observations: When the term lacune was described in the 1800s, its underlying pathophysiological basis was obscure. In the 1960s, C. Miller Fisher, MD, performed autopsy studies that showed that vessels supplying lacunes displayed segmental arteriolar disorganization, characterized by vessel enlargement, hemorrhage, and fibrinoid deposition. For these pathologic changes, he coined the term lipohyalinosis. Since that time, few attempts have been made to reconcile this pathologic description with modern mechanisms of cerebral small vessel disease (CSVD). During the past 6 years, progress has been made in understanding the clinical mechanisms, imaging characteristics, and genetic basis of LS.

Conclusions and Relevance: Questions persist regarding the order of events related to the initiation and progression of CSVD, how LS is related to other sequelae of CSVD, and whether LS is part of a systemic disease process. The relative roles of aging, oxidative stress, mechanical stress, genetic predisposition, and other vascular risk factors should be further studied, especially in the era of widespread antihypertensive use. Although understanding of endothelial dysfunction has increased, future work on the role of media and adventitial dysfunction should be explored. Recent advances in mapping the brain vasculome may generate new hypotheses. The investigation of new therapeutic targets, aimed at reversing CSVD processes and promoting neural repair after LS, depends upon further understanding these basic mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app