Add like
Add dislike
Add to saved papers

Seismic Imaging of Thickened Lithosphere Resulting From Plume Pulsing Beneath Iceland.

Ocean plates conductively cool and subside with seafloor age. Plate thickening with age is also predicted, and hot spots may cause thinning. However, both are debated and depend on the way the plate is defined. Determining the thickness of the plates along with the process that governs it has proven challenging. We use S-to-P (Sp) receiver functions to image a strong, persistent LAB beneath Iceland where the mid-Atlantic Ridge interacts with a plume with hypothesized pulsating thermal anomaly. The plate is thickest, up to 84 ± 6 km, beneath lithosphere formed during times of hypothesized hotter plume temperatures and as thin as 61 ± 6 km beneath regions formed during colder intervals. We performed geodynamic modeling to show that these plate thicknesses are inconsistent with a thermal lithosphere. Instead, periods of increased plume temperatures likely increased the melting depth, causing deeper depletion and dehydration, and creating a thicker plate. This suggests plate thickness is dictated by the conditions of plate formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app