Read by QxMD icon Read

Biosynthesis in the Albumen Gland-Capsule Gland Complex Limits Reproductive Effort in the Invasive Apple Snail Pomacea canaliculata

M P Cadierno, L Saveanu, M S Dreon, P R Martín, H Heras
Biological Bulletin 2018, 235 (1): 1-11
High fecundity often contributes to successful invasives. In molluscs, this may be facilitated by the albumen gland-capsule gland complex, which in gastropods secretes the egg perivitelline fluid that nourishes and protects embryos. The biochemistry of the albumen gland-capsule gland complex and its relationship with fecundity remain largely unknown. We addressed these issues in Pomacea canaliculata (Lamarck, 1822), a highly invasive gastropod whose fecundity and reproductive effort exceed those of ecologically similar gastropods. We evaluated the dynamics of its major secretion compounds (calcium, polysaccharides, and total proteins) as well as the gene expression and stored levels of perivitellins during key moments of the reproductive cycle, that is, before and after first copulation and at low, medium, and high reproductive output. Copulation and first oviposition do not trigger the onset of albumen gland-capsule gland complex biosynthesis. On the contrary, soon after an intermediate reproductive effort, genes encoding perivitellins overexpressed. A high reproductive effort caused a decrease in all albumen gland-capsule gland complex secretion components. Right after a high reproductive output, the albumen gland-capsule gland complex restored the main secretion components, and calcium recovered baseline reserves; but proteins and polysaccharides did not. These metabolic changes in the albumen gland-capsule gland complex after multiple ovipositions were reflected in a reduction in egg mass but did not compromise egg quality. At the end of the cycle, egg dry weight almost doubled the initial albumen gland-capsule gland complex weight. Results indicate that albumen gland-capsule gland complex biosynthesis limits a constantly high reproductive output. Therefore, lowering fecundity by targeting biosynthesis could effectively reduce the rate of this species' spread.


You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"