Add like
Add dislike
Add to saved papers

Enhancement and Inhibitory Activities of Minerals for Alanine Oligopeptide Elongation Under Hydrothermal Conditions.

Astrobiology 2018 November
In a previous study, we have showed that the elongation of an alanine oligopeptide [L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)4 )] to higher oligopeptides is enhanced by calcite and dolomite at 275°C, using a mineral-mediated hydrothermal flow reactor system. However, a problem during the use of hydrothermal flow reactor system was that some of the minerals, such as clay, could not be tested due to their clogging in the reactor. In this article, we attempted to analyze the scope of enhancement for the formation of L-alanyl-L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)5 ) and higher oligopeptides with different minerals including clay minerals for the elongation of alanine oligopeptide at 175°C. First, carbonate minerals and some clay minerals showed an enhancement of the formation of (Ala)5 from (Ala)4 . On the contrary, volcanic products showed strong inhibitory activities. According to the pH dependence on the (Ala)4 elongations, we confirmed that most enhancement and inhibitory activities are due to the pH influence on the elongation of (Ala)4 . However, the enhancement of montmorillonite (Tsukinuno), sphalerite, apatite, tourmaline, calcite (Nitto Funka), and the inhibitory activities by volcanic ash (Shinmoedake), volcanic ash (Sakurajima), dickite, and pyrophillite are not simply due to the pH change in the presence of these minerals. The difference found between the previous and present studies suggests that the interaction kinetics of the aqueous phase with the mineral phase is also an important factor for the elongation of (Ala)4 . These data imply that the environments with pH near neutral to weak alkaline and with minerals might have been useful for the accumulation of oligopeptides in hydrothermal conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app