MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Calcium Induces Mitochondrial Oxidative Stress Because of its Binding to Adenine Nucleotide Translocase

Francisco Correa, Natalia Pavón, Mabel Buelna-Chontal, Natalia Chiquete-Félix, Luz Hernández-Esquivel, Edmundo Chávez
Cell Biochemistry and Biophysics 2018, 76 (4): 445-450
30159781
Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
30159781
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"