Add like
Add dislike
Add to saved papers

Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn-Al LDH: application on crystal violet and malachite green dye adsorption-isotherm, kinetics and Box-Behnken design.

The adsorption of crystal violet (CV) and malachite green (MG) dyes using carbon-coated Zn-Al-layered double hydroxide (C-Zn-Al LDH) was investigated in this work. The characterisation of both Zn-Al LDH and C-Zn-Al LDH was performed using XRD, SEM, TEM, EDX, XPS, FTIR, BET and TGA. The results indicated that carbon particles were effectively coated on Zn-Al LDH surface. The average total pore volume and pore diameter of C-Zn-Al LDH were observed as 0.007 cc/g and 3.115 nm. The impact of parameters like initial dye concentration, pH and adsorbent dosage on the dye removal efficiency was confirmed by carrying out Box-Behnken design experiments. Langmuir isotherm was well suited for both CV and MG adsorption among other isotherm models. The adsorption capacity was maximally obtained as 129.87 and 126.58 mg/g for CV and MG respectively. Pseudo-second order fits the adsorption kinetics than any other kinetic models for both the dyes. The thermodynamic study indicates that the adsorption process of CV was exothermic, whereas for MG was endothermic. Electrostatic attraction, H-bonding, n-π and π- π interactions were mainly influenced in the adsorption process. This study concludes that C-Zn-Al LDH is an efficient adsorbent for the CV and MG dye removal from aqueous solutions. Graphical abstract ᅟ Graphical abstract contains text below the minimum required font size of 6pts inside the artwork, and there is no sufficient space available for the text to be enlarged. Please provide replacement figure file.Graphical abstract contains text is rewritten with the maximum required font size inside the artwork and provided sufficient space between the text which is enlarged.The new Graphical abstract is attached as an image in the attachment file for your further usage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app