Add like
Add dislike
Add to saved papers

Hydrophobic Inorganic Oxide Pigments via Polymethylhydrosiloxane Grafting: Dispersion in Aqueous Solution at Extraordinarily High Solids Concentrations.

Building on the recent demonstration of aqueous-dispersible hydrophobic pigments that retain their surface hydrophobicity even after drying, we demonstrate the synthesis of surface-modified Ti-Pure R-706 (denoted R706) titanium dioxide-based pigments, consisting of a thin (one to three monolayers) grafted polymethylhydrosiloxane (PMHS) coating, which (i) are hydrophobic in the dry state according to capillary rise and dynamic vapor sorption measurements and (ii) form stable aqueous dispersions at solid contents exceeding 75 wt % (43 vol %), without added dispersant, displaying similar rheology to R706 native oxide pigments at 70 wt % (37 vol %) consisting of an optimal amount of conventional polyanionic dispersant (0.3 wt % on pigment basis). The surface-modified pigments have been characterized via 29 Si and 13 C cross-polarization/magic angle spinning solid-state NMR spectroscopy; infrared spectroscopy; thermogravimetric and elemental analyses; and ζ potential measurements. On the basis of these data, the stability of the surface-modified PMHS-R706 aqueous dispersions is attributed to steric effects, as a result of grafted PMHS strands on the R706 surface, and depends on the chaotropic nature of the base used during PMHS condensation to the pigment/polysiloxane interface. The lack of water wettability of the surface-modified oxide particles in their dry state translates to improved water-barrier properties in coatings produced with these surface-modified pigment particles. The synthetic approach appears general as demonstrated by its application to various inorganic-oxide pigment particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app