JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos.

Cell Stem Cell 2018 September 7
Somatic cell nuclear transfer (SCNT) enables cloning of differentiated cells by reprogramming their nuclei to a totipotent state. However, successful full-term development of SCNT embryos is a low-efficiency process and arrested embryos frequently exhibit epigenetic abnormalities. Here, we generated genome-wide DNA methylation maps from mouse pre-implantation SCNT embryos. We identified widespread regions that were aberrantly re-methylated, leading to mis-expression of genes and retrotransposons important for zygotic genome activation. Inhibition of DNA methyltransferases (Dnmts) specifically rescued these re-methylation defects and improved the developmental capacity of cloned embryos. Moreover, combining inhibition of Dnmts with overexpression of histone demethylases led to stronger reductions in inappropriate DNA methylation and synergistic enhancement of full-term SCNT embryo development. These findings show that excessive DNA re-methylation is a potent barrier that limits full-term development of SCNT embryos and that removing multiple epigenetic barriers is a promising approach to achieve higher cloning efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app