Add like
Add dislike
Add to saved papers

Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes.

Life Sciences 2018 October 2
AIMS: Several anti-melanogenic molecules have been developed or identified, but their uses are limited due to either adverse effects or instability during the treatment. We aimed to evaluate the effects of extracellular superoxide dismutase (SOD3), a powerful antioxidant, as a candidate anti-melanogenic molecule.

MAIN METHODS: UVB-induced reactive oxygen species (ROS) production and proliferation in melan-a cells was evaluated by 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate staining and bromodeoxyuridine incorporation assay, respectively. Quantitative real-time polymerase chain reaction and western blot were performed to detect the melanogenesis-related gene expression and downstream signaling. Anti-melanogenic effects of SOD3 were also evaluated using SOD3 transgenic mice under UVB exposure in-vivo condition.

KEY FINDINGS: SOD3 inhibited UVB-induced proliferation, ROS production and melanogenesis in melanocytes. Measurement of melanin content and tyrosinase activity assays showed that SOD3 significantly inhibited melanin synthesis. Moreover, these suppressive effects of SOD3 were dependent on the endothelin-1 (ET-1)/endothelin B receptor, protein kinase C, melanocortin 1 receptor/protein kinase A, Wnt7a/β-catenin, and mitogen-activated protein kinase pathways, with concomitant downregulation of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related proteins 1, dopachrome tautomerse. Interestingly, SOD3 was found to inhibit transforming growth factor-beta 1 (TGF-β1) to inactivate the ET-1 signaling pathway, and finally prevents the production of melanin.

SIGNIFICANCE: Our results provide novel insights into the role of SOD3 in melanocyte homeostasis and its uses as a potential biomedicine to treat hyperpigmentary conditions of the skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app