We have located links that may give you full text access.
Journal Article
Multicenter Study
External validation of computed tomography decision rules for minor head injury: prospective, multicentre cohort study in the Netherlands.
BMJ : British Medical Journal 2018 August 24
OBJECTIVE: To externally validate four commonly used rules in computed tomography (CT) for minor head injury.
DESIGN: Prospective, multicentre cohort study.
SETTING: Three university and six non-university hospitals in the Netherlands.
PARTICIPANTS: Consecutive adult patients aged 16 years and over who presented with minor head injury at the emergency department with a Glasgow coma scale score of 13-15 between March 2015 and December 2016.
MAIN OUTCOME MEASURES: The primary outcome was any intracranial traumatic finding on CT; the secondary outcome was a potential neurosurgical lesion on CT, which was defined as an intracranial traumatic finding on CT that could lead to a neurosurgical intervention or death. The sensitivity, specificity, and clinical usefulness (defined as net proportional benefit, a weighted sum of true positive classifications) of the four CT decision rules. The rules included the CT in head injury patients (CHIP) rule, New Orleans criteria (NOC), Canadian CT head rule (CCHR), and National Institute for Health and Care Excellence (NICE) guideline for head injury.
RESULTS: For the primary analysis, only six centres that included patients with and without CT were selected. Of 4557 eligible patients who presented with minor head injury, 3742 (82%) received a CT scan; 384 (8%) had a intracranial traumatic finding on CT, and 74 (2%) had a potential neurosurgical lesion. The sensitivity for any intracranial traumatic finding on CT ranged from 73% (NICE) to 99% (NOC); specificity ranged from 4% (NOC) to 61% (NICE). Sensitivity for a potential neurosurgical lesion ranged between 85% (NICE) and 100% (NOC); specificity from 4% (NOC) to 59% (NICE). Clinical usefulness depended on thresholds for performing CT scanning: the NOC rule was preferable at a low threshold, the NICE rule was preferable at a higher threshold, whereas the CHIP rule was preferable for an intermediate threshold.
CONCLUSIONS: Application of the CHIP, NOC, CCHR, or NICE decision rules can lead to a wide variation in CT scanning among patients with minor head injury, resulting in many unnecessary CT scans and some missed intracranial traumatic findings. Until an existing decision rule has been updated, any of the four rules can be used for patients presenting minor head injuries at the emergency department. Use of the CHIP rule is recommended because it leads to a substantial reduction in CT scans while missing few potential neurosurgical lesions.
DESIGN: Prospective, multicentre cohort study.
SETTING: Three university and six non-university hospitals in the Netherlands.
PARTICIPANTS: Consecutive adult patients aged 16 years and over who presented with minor head injury at the emergency department with a Glasgow coma scale score of 13-15 between March 2015 and December 2016.
MAIN OUTCOME MEASURES: The primary outcome was any intracranial traumatic finding on CT; the secondary outcome was a potential neurosurgical lesion on CT, which was defined as an intracranial traumatic finding on CT that could lead to a neurosurgical intervention or death. The sensitivity, specificity, and clinical usefulness (defined as net proportional benefit, a weighted sum of true positive classifications) of the four CT decision rules. The rules included the CT in head injury patients (CHIP) rule, New Orleans criteria (NOC), Canadian CT head rule (CCHR), and National Institute for Health and Care Excellence (NICE) guideline for head injury.
RESULTS: For the primary analysis, only six centres that included patients with and without CT were selected. Of 4557 eligible patients who presented with minor head injury, 3742 (82%) received a CT scan; 384 (8%) had a intracranial traumatic finding on CT, and 74 (2%) had a potential neurosurgical lesion. The sensitivity for any intracranial traumatic finding on CT ranged from 73% (NICE) to 99% (NOC); specificity ranged from 4% (NOC) to 61% (NICE). Sensitivity for a potential neurosurgical lesion ranged between 85% (NICE) and 100% (NOC); specificity from 4% (NOC) to 59% (NICE). Clinical usefulness depended on thresholds for performing CT scanning: the NOC rule was preferable at a low threshold, the NICE rule was preferable at a higher threshold, whereas the CHIP rule was preferable for an intermediate threshold.
CONCLUSIONS: Application of the CHIP, NOC, CCHR, or NICE decision rules can lead to a wide variation in CT scanning among patients with minor head injury, resulting in many unnecessary CT scans and some missed intracranial traumatic findings. Until an existing decision rule has been updated, any of the four rules can be used for patients presenting minor head injuries at the emergency department. Use of the CHIP rule is recommended because it leads to a substantial reduction in CT scans while missing few potential neurosurgical lesions.
Full text links
Related Resources
Trending Papers
Septic shock in the immunocompromised cancer patient: a narrative review.Critical Care : the Official Journal of the Critical Care Forum 2024 August 30
Proteinuria and Progression of Renal Damage: The Main Pathogenetic Mechanisms and Pharmacological Approach.Medicina 2024 November 6
New strategies for the treatment of hyperkalemia.European Journal of Internal Medicine 2024 November 2
Hemodialysis Vascular Access: Core Curriculum 2025.American Journal of Kidney Diseases 2024 December 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app