Add like
Add dislike
Add to saved papers

Lactoperoxidase immobilization on silver nanoparticles enhances its antimicrobial activity.

Lactoperoxidase (LPO) is an antimicrobial protein present in milk that plays an important role in natural defence mechanisms during neonatal and adult life. The antimicrobial activity of LPO has been commercially adapted for increasing the shelf life of dairy products. Immobilization of LPO on silver nanoparticles (AgNPs) is a promising way to enhance the antimicrobial activity of LPO. In the current study, LPO was immobilized on AgNPs to form LPO/AgNP conjugate. The immobilized LPO/AgNP conjugate was characterized by various biophysical techniques. The enhanced antibacterial activity of the conjugate was tested against E. coli in culture at 2 h intervals for 10 h. The results showed successful synthesis of spherical AgNPs. LPO was immobilized on AgNPs with agglomerate sizes averaging approximately 50 nm. The immobilized conjugate exhibited stronger antibacterial activity against E. coli in comparison to free LPO. This study may help in increasing the efficiency of lactoperoxidase system and will assist in identifying novel avenues to enhance the stability and antimicrobial function of LPO system in dairy and other industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app