Add like
Add dislike
Add to saved papers

DNA methylation associated with healthy aging of elderly twins.

GeroScience 2018 August 23
Variation in healthy aging and lifespan is ascribed more to various non-genetic factors than to inherited genetic determinants, and a major goal in aging research is to reveal the epigenetic basis of aging. One approach to this goal is to find genomic sites or regions where DNA methylation correlates with biological age. Using health data from 134 elderly twins, we calculated a frailty index as a quantitative indicator of biological age, and by applying the Infinium HumanMethylation450K BeadChip technology to their leukocyte DNA samples, we obtained quantitative DNA methylation data on genome-wide CpG sites. We analyzed the health and epigenome data by taking two independent associative approaches: the parametric regression-based approach and a non-parametric machine learning approach followed by GO ontology analysis. Our results indicate that DNA methylation at CpG sites in the promoter region of PCDHGA3 is associated with biological age. PCDHGA3 belongs to clustered protocadherin genes, which are all located in a single locus on chromosome 5 in human. Previous studies of the clustered protocadherin genes showed that (1) DNA methylation is associated with age or age-related phenotypes; (2) DNA methylation can modulate gene expression; (3) dysregulated gene expression is associated with various pathologies; and (4) DNA methylation patterns at this locus are associated with adverse lifetime experiences. All these observations suggest that DNA methylation at the clustered protocadherin genes, including PCDHGA3, is a key mediator of healthy aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app