Add like
Add dislike
Add to saved papers

Two different STAT1 gain-of-function mutations lead to diverse IFN-γ-mediated gene expression.

Signal transducer and activator of transcription 1 (STAT1) regulates multiple biological processes downstream of a variety of cytokine receptors in many cell types. Heterozygous gain-of-function (GOF) mutations in STAT1 have been associated with a diverse phenotype encompassing chronic mucocutaneous candidiasis (CMCC) and declining immunity. There is no clear correlation between STAT1 domain-specific mutations and phenotype, and it remains unclear why GOF mutations in STAT1 result in such a wide spectrum of clinical presentations. To begin exploring this dilemma, we have studied the patterns of gene expression mediated by two different GOF mutations. Analysis of IFN-γ response elements using RNA microarrays in cells transfected with the rare H629Y mutant or the common R274G mutant showed distinct patterns of gene expression. We show here that the impact of GOF mutations in STAT1 is variant-specific. This difference in gene expression may explain the diversity in clinical manifestations experienced by these patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app