Add like
Add dislike
Add to saved papers

miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells.

miRNAs is a kind of noncoding small RNAs with negative regulation function. Some miRNAs play a crucial role in the growth of tumor cells. In this study, we analyzed the role of miR-335-5p and its target gene intercellular adhesion molecule 1 (ICAM-1) in thyroid cancer. Real-time polymerase chain reaction (PCR) results showed that the expression level of ICAM-1 in cancer tissues was higher than that in their adjacent tissues. The expression level of ICAM-1 in papillary thyroid carcinoma was also significantly higher than that in other types of tumors. However, the expression of miR-335-5p is opposite to that of ICAM-1. In human thyroid cancer cell lines TPC-1, FTC-133, TT and human thyroid follicular cell line Nthyori 3-1, the expression level of ICAM-1 in TPC-1 was significantly higher than that of other cells, while the expression level of miR-335-5p in TPC-1 was significantly lower than that of other cells. When ICAM-1 expression was downregulated and miR-335-5p expression was upregulated in TPC-1 cells, ICAM-1 expression was upregulated and miR-335-5p expression was downregulated in FTC-133 cells, we found that ICAM-1 could promote the proliferation of thyroid cancer cells, while miR-335-5p could inhibit the proliferation of thyroid cancer cells. miR-335-5p could combine with 3'UTR of ICAM-1 by bioinformatics prediction. Luciferase reporter gene analysis and Western blotting detection further confirmed that miR-335-5p could target ICAM-1 and inhibit its expression. The expression level of miR-335-5p was downregulated, while the expression level of ICAM-1 was upregulated in thyroid cancer. This study will help us better understand the pathogenesis of thyroid cancer and provide new insights into the treatment of this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app