Add like
Add dislike
Add to saved papers

Alteration of microRNA 340-5p and Arginase-1 Expression in Peripheral Blood Cells during Acute Ischemic Stroke.

Molecular Neurobiology 2018 August 16
Acute stroke alters the systemic immune response as can be observed in peripheral blood; however, the molecular mechanism by which microRNA (miRNA) regulates target gene expression in response to acute stroke is unknown. We performed a miRNA microarray on the peripheral blood of 10 patients with acute ischemic stroke and 11 control subjects. Selected miRNAs were quantified using a TaqMan assay. After searching for putative targets from the selected miRNAs using bioinformatic analysis, functional studies including binding capacity and protein expression of the targets of the selected miRNAs were performed. The results reveal a total of 30 miRNAs that were differentially expressed (16 miRNAs were upregulated and 14 miRNAs were downregulated) during the acute phase of stroke. Using prediction analysis, we found that miR-340-5p was predicted to bind to the 3'-untranslated region of the arginase-1 (ARG1) gene; a luciferase reporter assay confirmed the binding of miR-340-5p to ARG1. miR-340-5p was downregulated whereas ARG1 mRNA was upregulated in peripheral blood in patients experiencing acute stroke. Overexpression of miR-340-5p in human neutrophil and mouse macrophage cell lines induced downregulation of the ARG1 protein. Transfection with miR-340-5p increased nitric oxide production after LPS treatment in a mouse macrophage cell line. Our results suggest that several miRNAs are dynamically altered in the peripheral blood during the acute phase of ischemic stroke, including miR-340-5p. Acute stroke induces the downregulation of miR-340-5p, which subsequently upregulates ARG1 protein expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app