Add like
Add dislike
Add to saved papers

An Efficient Iterative Cerebral Perfusion CT Reconstruction via Low-Rank Tensor Decomposition with Spatial-Temporal Total Variation Regularization.

Cerebrovascular diseases, i.e., acute stroke, are a common cause of serious long-term disability. Cerebral perfusion computed tomography (CPCT) can provide rapid, highresolution, quantitative hemodynamic maps to assess and stratify perfusion in patients with acute stroke symptoms. However, CPCT imaging typically involves a substantial radiation dose due to its repeated scanning protocol. Therefore, in this work, we present a low-dose CPCT image reconstruction method to yield high-quality CPCT images and high-precision hemodynamic maps by utilizing the great similarity information among the repeated scanned CPCT images. Specifically, a newly developed low-rank tensor decomposition with spatial-temporal total variation (LRTD-STTV) regularization is incorporated into the reconstruction model. In the LRTD-STTV regularization, the tensor Tucker decomposition is used to describe global spatialtemporal correlations hidden in the sequential CPCT images, and it is superior to the matricization model (i.e., low-rank model) that fails to fully investigate the prior knowledge of the intrinsic structures of the CPCT images after vectorizing the CPCT images. Moreover, the spatial-temporal TV regularization is used to characterize the local piecewise smooth structure in the spatial domain and the pixels' similarity with the adjacent frames in the temporal domain because the intensity at each pixel in CPCT images is similar to its neighbors. Therefore, the presented LRTD-STTV model can efficiently deliver faithful underlying information of the CPCT images and preserve the spatial structures. An efficient alternating direction method of multipliers algorithm is also developed to solve the presented LRTD-STTV model. Extensive experimental results on numerical phantom and patient data clearly demonstrated that the presented model can significantly improve the quality of CPCT images and provide accurate diagnostic features in hemodynamic maps for low-dose cases compared with the existing popular algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app