Add like
Add dislike
Add to saved papers

Spatial resolution requirements for active radiation detectors used beyond low earth orbit.

Measurements of the incident fluence of HZE particles, as a function of LET, are used to determine absorbed dose as well as Quality Factors for assigning risk estimates to astronauts during manned space missions. These data are often based on thin solid state detectors that measure energy deposition, dE, and the assumption that the trajectory of the particle, dx, is equivalent to the thickness of the detector. Heavy ions often fragment while penetrating shielding materials in vehicles or habitats. Projectile fragments can be clustered spatially and temporally at the location of the thin detector which are then misclassified as a single particle. Eliminating the confounding effects of coincident events is the first step in extending the reach of flight instruments to identify the charge and velocity of individual particles. Identification of individual particles, in a fragmentation spectrum, will require that detection systems have sufficient segmentation to eliminate coincident events. The objective of this study was to reduce coincident events while avoiding over-design and complexity. Monte Carlo simulations, using Geant4, were performed for 4 He, 12 C, 28 Si and 56 Fe ions at energies of 300, 900 and 2400 MeV/n incident upon aluminum shields having areal densities of 5.4, 13.5, and 54 g/cm2 . The identity, energy and spatial distribution of all particles downstream from the shielding were analyzed using a novel approach based on proximity distributions. Results indicated that pixel dimensions on the order of 1 mm were sufficient to reduce errors caused by coincident events for active space radiation detectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app