Add like
Add dislike
Add to saved papers

Waste-cleaning waste: synthesis of ZnO porous nano-sheets from batteries for dye degradation.

This paper describes a clean approach of waste-cleaning waste. Two-dimensional (2D) ZnO porous nano-sheets were synthesized from end-of-life zinc-carbon batteries via a simple homogeneous precipitation-calcination route, and the as-synthesized product was applied as photocatalyst for the purpose of photodegradation of methylene blue/MB aqueous solution under UV-Vis irradiation. Precipitation at ambient temperature resulted in the formation of the crystalline phase of zinc hydroxide nitrate hydrate [Zn5 (OH)8 (NO3 )2 (H2 O)2 ], which was then transformed to ZnO through calcination. FE-SEM studies revealed the resulting ZnO had the morphology of porous nano-sheets with thickness of up to 100 nm. The photocatalytic activity tests proved that the batteries-derived ZnO porous nano-sheets can be a promising candidate for photodegradation of organic pollutant in industrial waste water. The results presented here confirm a possibility of utilization waste batteries as a resource of photodegrading MB in wastewater treatment, hereby an opportunity to deliver environmental benefits. Graphical abstract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app