Add like
Add dislike
Add to saved papers

The Micro-Shear Bond Strength of Various Resinous Restorative Materials to Aged Biodentine.

Introduction: The type of materials and application time of veneering restorations on calcium silicate cements are important factors which influence the interfacial properties. The aim of this study was to measure the micro-shear bond strength of a resin composite (RC) using several adhesive systems and a resin-modified glass ionomer cement (RM-GIC) to different aged Biodentine specimens.

Methods and Materials: A total of 15 Biodentine blocks were prepared and assigned to three aging periods: 12 min, one week and one month. Then they were subdivided into five sub-groups to receive cylinders of resinous materials. RC was applied using different adhesive systems: A) no adhesive B) etch and rinse C) two-step self-etch and D) universal adhesive in self-etch mode and E) RM-GIC applied directly over Biodentine. Micro-shear bond strength was measured and the data were analyzed using one-way and two-way ANOVA. The level of significance was set at 0.05.

Result: There was significant interaction between Biodentine aging periods and resinous materials ( P< 0.05). The highest value was obtained in group D bonded to the recently set Biodentine. Increasing the aging period to one week resulted in increased micro-shear bond strength in all groups expect for group D. One-month incubation time led to reduced shear bond strength in group A, C and D. Micro-shear bond strength values of group E increased to the longer aged Biodentine.

Conclusion: Group D showed the highest bond strength to freshly mixed Biodentine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app