Add like
Add dislike
Add to saved papers

Induction of Liver Steatosis in BAP31-Deficient Mice Burdened with Tunicamycin-Induced Endoplasmic Reticulum Stress.

Endoplasmic reticulum (ER) stress is highly associated with liver steatosis. B-cell receptor-associated protein 31 (BAP31) has been reported to be involved in ER homeostasis, and plays key roles in hepatic lipid metabolism in high-fat diet-induced obese mice. However, whether BAP31 modulates hepatic lipid metabolism via regulating ER stress is still uncertain. In this study, wild-type and liver-specific BAP31-depleted mice were administrated with ER stress activator of Tunicamycin, the markers of ER stress, liver steatosis, and the underlying molecular mechanisms were determined. BAP31 deficiency increased Tunicamycin-induced hepatic lipid accumulation, aggravated liver dysfunction, and increased the mRNA levels of ER stress markers, including glucose-regulated protein 78 ( GRP78 ), X-box binding protein 1 ( XBP1 ), inositol-requiring protein-1α ( IRE1α ) and C/EBP homologous protein ( CHOP ), thus promoting ER stress in vivo and in vitro. Hepatic lipid export via very low-density lipoprotein (VLDL) secretion was impaired in BAP31-depleted mice, accompanied by reduced Apolipoprotein B ( APOB ) and microsomal triglyceride transfer protein ( MTTP ) expression. Exogenous lipid clearance was also inhibited, along with impaired gene expression related to fatty acid transportation and fatty acid β-oxidation. Finally, BAP31 deficiency increased Tunicamycin-induced hepatic inflammatory response. These results demonstrate that BAP31 deficiency increased Tunicamycin-induced ER stress, impaired VLDL secretion and exogenous lipid clearance, and reduced fatty acid β-oxidation, which eventually resulted in liver steatosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app