Add like
Add dislike
Add to saved papers

Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions.

Nitrogen-doped carbon dots (N-CDs) with well-distribution size and strong blue emission were successfully synthesized via a simple mild hydrothermal strategy using citric acid and ethylenediamine as co-precursors. The highly fluorescent N-CDs exhibit high fluorescence quantum yield (QY, 58.6%), excitation-independent emission behavior, and good photostability. The experimental results showed that the N-CDs can be served as a fluorescent sensing platform for detection of Cr(VI) ions due to the effective fluorescence quenching effect of Cr(VI) ions. The quenching mechanism probably arises from the inner filter effect (IFE) and the electron transfer due to the strong interactions between functional groups (COOH, OH and NH2 groups) of the N-CDs and Cr(VI) ions. It is also found that the N-CDs showed high sensitivity toward Cr(VI) ions with a detection limit of 0.26 μM. Moreover, the obtained N-CD can be employed as chemsensor to detect Cr (VI) in real river water samples, which have potential applications in the environmental water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app