Add like
Add dislike
Add to saved papers

Transition-Metal Oxides Anchored on Nitrogen-Enriched Carbon Ribbons for High-Performance Pseudocapacitors.

Increasing demand for effective energy-storage systems derived from low-cost and ecofriendly raw materials has aroused wide concern. In this contribution, we propose nitrogen-abundant amorphous micron-sized carbon ribbons (AMCRs) originating from biomass raupo as a novel substrate due to their specific quasi 2D morphologies and outstanding dispersion ability. Owing to the innate nitrogen atoms on the surface of AMCRs, ultrathin binary and ternary metal oxide (NiO, CoO, and NiCo2 O4 ) nanosheets can be uniformly developed under benign conditions. These three composites were separately fabricated as electrodes for supercapacitors in a three-electrode system and exhibited favorable activities. Among them, the ternary metal oxide composites NiCo2 O4 @AMCRs delivered the supreme specific capacitance of 1691 F g-1 and best cycling stability (89 % capacity retention over 10,000 cycles). Moreover, symmetric supercapacitors (NiCo2 O4 @AMCRs//NiCo2 O4 @AMCRs) were assembled inside sleeve devices with 2 m KOH aqueous electrolyte, which demonstrated admirable cyclic stability (79.1 % capacity retention over 8,000 cycles), and an excellent energy density of 26 Wh kg-1 at the power density of 1.8 kW kg-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app