JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Detection of Mitochondria Membrane Potential to Study CLIC4 Knockdown-induced HN4 Cell Apoptosis In Vitro.

Depletion of the mitochondrial membrane potential (MMP, ΔΨm) is considered the earliest event in the apoptotic cascade. It even occurs ahead of nuclear apoptotic characteristics, including chromatin condensation and DNA breakage. Once the MMP collapses, cell apoptosis will initiate irreversibly. A series of lipophilic cationic dyes can pass through the cell membrane and aggregate inside the matrix of mitochondrion, and serve as fluorescence marker to evaluate MMP change. As one of the six members of the Cl- intracellular channel (CLIC) family, CLIC4 participates in the cell apoptotic process mainly through the mitochondrial pathway. Here we describe a detailed protocol to measure MMP via monitoring the fluorescence fluctuation of Rhodamine 123 (Rh123), through which we study apoptosis induced by CLIC4 knockdown. We discuss the advantages and limitations of the application of confocal laser scanning and normal fluorescence microscope in detail, and also compare it with other methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app