Add like
Add dislike
Add to saved papers

Parametric-rate inference for one-sided differentiable parameters.

Suppose one has a collection of parameters indexed by a (possibly infinite dimensional) set. Given data generated from some distribution, the objective is to estimate the maximal parameter in this collection evaluated at the distribution that generated the data. This estimation problem is typically non-regular when the maximizing parameter is non-unique, and as a result standard asymptotic techniques generally fail in this case. We present a technique for developing parametric-rate confidence intervals for the quantity of interest in these non-regular settings. We show that our estimator is asymptotically efficient when the maximizing parameter is unique so that regular estimation is possible. We apply our technique to a recent example from the literature in which one wishes to report the maximal absolute correlation between a prespecified outcome and one of p predictors. The simplicity of our technique enables an analysis of the previously open case where p grows with sample size. Specifically, we only require that log p grows slower than n , where n is the sample size. We show that, unlike earlier approaches, our method scales to massive data sets: the point estimate and confidence intervals can be constructed in O ( np ) time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app