Add like
Add dislike
Add to saved papers

Microcalorimetry and enzyme activity to determine the effect of nickel and sodium butyl xanthate on soil microbial community.

In non-ferrous metal tailings, combined pollution in the surrounding soil is caused by heavy metals and flotation chemicals. The combined effects of nickel (Ni) and its primary ore processing collector, sodium butyl xanthate (SBX), on soil microbial activity were investigated following the fluorescein diacetate hydrolase (FDA) and sucrase (SA) activities, and isothermal microcalorimetry during 60 days. FDA and SA activities as well as overall soil microbial activity were significantly affected by Ni, SBX and Ni/SBX mixture. The inhibition rate (I) of the growth rate constant (k) being higher with the Ni/SBX mixture than with SBX alone during the experiment. The growth rate constant (k) was positively correlated (p < 0.05 or p < 0.01) with enzyme activities (FDA and SA) indicating that k represented a valuable proxy to evaluate the toxic effect of metals and flotation reagents on soil microorganisms. Thus, microcalorimetry was a useful method to characterize soil microbial communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app