Add like
Add dislike
Add to saved papers

CRISPR/Cas9 Gene Editing of Human Histone H2A Variant H2AX and MacroH2A.

Histone H2A variants play important roles in maintaining the integrity of the genome. For example, the histone variant H2AX is phosphorylated on Ser139 (called γH2AX) at DNA double-strand breaks (DSB) and serves as a signal for the initiation of downstream DNA damage response (DDR) factor recruitment and DNA repair activities within damaged chromatin. For decades, genetic studies in human cells involving DNA damage signaling and repair factors have relied mostly on either knockdown by RNA interference (i.e., shRNA and siRNA) or the use of mouse embryonic fibroblasts derived from knockout (KO) mice. Recent advances in gene editing using ZNF nuclease, TALEN, and CRISPR/Cas9 have allowed the generation of human KO cell lines, allowing genetic models for studying the DDR, including histone H2A variants in human cells. Here, we describe a detailed protocol for generating and verifying KO of H2AX and macroH2A histone H2A variants using CRISPR/Cas9 gene editing in human cancer cell lines. This protocol allows the use and development of genetic systems in human cells to study histone variants and their functions, including within the DDR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app