Add like
Add dislike
Add to saved papers

Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation.

Brain Stimulation 2018 September
BACKGROUND: The adoption of transcranial Direct Current Stimulation (tDCS) is encouraged by portability and ease-of-use. However, the preparation of tDCS electrodes remains the most cumbersome and error-prone step. Here, we validate the performance of the first "dry" electrodes for tDCS. A "dry electrode" excludes 1) any saline or other electrolytes, that are prone to spread and leaving a residue; 2) any adhesive at the skin interface; or 3) any electrode preparation steps except the connection to the stimulator. The Multilayer Hydrogel Composite (MHC) dry-electrode design satisfied these criteria.

OBJECTIVE/HYPOTHESIS: Over an exposed scalp (supraorbital (SO) regions of forehead), we validated the performance of the first "dry" electrode for tDCS against the state-of-the-art conventional wet sponge-electrode to test the hypothesis that whether tDCS can be applied with a dry electrode with comparable tolerability as conventional "wet" techniques?

METHODS: MHC dry-electrode performance was verified using a skin-phantom, including mapping voltage at the phantom surface and mapping current inside the electrode using a novel biocompatible flexible printed circuit board current sensor matrix (fPCB-CSM). MHC dry-electrode performance was validated in a human trial including tolerability (VAS and adverse events), skin redness (erythema), and electrode current mapping with the fPCB-CSM. Experimental data from skin-phantom stimulation were compared against a finite element method (FEM) model.

RESULTS: Under the tested conditions (1.5 mA and 2 mA tDCS for 20 min using MHC-dry and sponge-electrode), the tolerability was improved, and the erythema and adverse-events were comparable between the MHC dry-electrode and the state-of-the-art sponge electrodes.

CONCLUSION: Dry (residue-free, non-spreading, non-adhesive, and no-preparation-needed) electrodes can be tolerated under the tested tDCS conditions, and possibly more broadly used in non-invasive electrical stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app