Add like
Add dislike
Add to saved papers

C 2 N-graphene supported single-atom catalysts for CO 2 electrochemical reduction reaction: mechanistic insight and catalyst screening.

Nanoscale 2018 August 17
Single-atom catalysts (SACs) have emerged as an excellent platform for enhancing catalytic performance. Inspired by the recent experimental synthesis of nitrogenated holey 2D graphene (C2N-h2D) (Mahmood et al., Nat. Commun., 2015, 6, 6486-6493), we report density functional theory calculations combined with computational hydrogen electrode model to show that C2N-h2D supported metal single atoms (M@C2N) are promising electrocatalysts for CO2 reduction reaction (CO2 RR). M confined at pyridinic N6 cavity promotes activation of inert O[double bond, length as m-dash]C[double bond, length as m-dash]O bonds and subsequent protonation steps, with *COOH → *CO → CHO predicted to be the primary pathway for producing methanol and methane. It is found that *CO + H+ + e- → *CHO is most likely to be the potential determining step; breaking the scaling relation of *CO and *CHO binding on M@C2N SACs may simply be a rare event that is sensitively controlled by the detailed geometry of the adsorbate. Among twelve metals screened, M@C2N SACs where M = Ti, Mn, Fe, Co, Ni, Ru were identified to be effective in catalyzing CO2 RR with lowered overpotentials (0.58 V-0.80 V).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app